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4.4 Functional Analysis (Satisfies EIA/IS 731 FA 1.2 and iCMM PA 4) 
Functional Analysis details the use of functional flow diagramming as a representative 
structured analysis process that is the preferred approach of the Federal Aviation Administration 
(FAA).  In addition, this section covers several alternative approaches, as FAA system 
engineers come in contact with organizations that apply techniques other than functional flow 
diagramming.  Therefore, it is necessary that the engineers be able to communicate with 
members of those organizations and integrate their results with the work performed by other 
organizations.  The following paragraphs detail functional flow diagramming; alternative 
approaches appropriate for systems and hardware; alternative models for problems to be solved 
with computer software; and references that cover these techniques in more depth. 

4.4.1 Introduction to Functional Analysis 
The process of analyzing functions provides System Engineering (SE) with a functional system 
description that becomes a framework for developing requirements and physical architectures. 
Utilizing the Functional Analysis process significantly improves synthesis of design, innovation, 
requirements development, and integration.  The Functional Analysis process provides two key 
benefits to SE: (1) it discourages single-point solutions, and (2) it describes the behaviors that 
lead to requirements and physical architectures.  The essential elements of Functional Analysis 
are illustrated in Figure 4.4-1, which lists the key inputs necessary to initiate the task, providers, 
process tasks, outputs required, and customers of process outputs.  The beginning and ending 
boundary tasks, as well as the intermediate tasks, are described in later paragraphs.  
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Figure 4.4-1.  Functional Analysis Process-Based Management Chart 

Outputs 

Customers 
Lifecycle Phase

 

!

!

!

!

!

Mission Analysis
Investment Analysis

Solution Implementation

In-Service Management

Service Life Ext.

Disposal



NAS SYSTEM ENGINEERING                                                                                                          SECTION 4.4                            
VERSION 3.0 09/30/04                                                                                                                                                                     

4.4-3 

Systems may be described using two different facets.  First, a system may be described as a 
physical architecture with elements that interact with themselves and the system environment in 
accordance with a predefined process to achieve the system mission.  At the same time, a 
system may be described by the functions that it performs.  A system is intended to satisfy 
predefined functions, with the highest-level function defined as the stakeholder need (also the 
ultimate system requirements).  A function is a characteristic action or activity that has to be 
performed in order to achieve a desired system objective (or stakeholder need).  A function 
name is stated in the form of an action verb followed by a noun or noun phrase; it is an action 
that describes the desired system behavior.  Examples of common functions include “read 
book,” “eat food,” and “go to store.”  A function is accomplished by one or more system 
elements composed of equipment (hardware, software, and firmware), people, and procedures.  
The function occurs within the system environment and is performed to achieve system 
operations.  In Functional Analysis, because a function may be accomplished by more than one 
system element, functions are unable to be allocated.  Rather, functions are used to develop 
requirements, which are then allocated to solutions in the form of a physical architecture.  
When unprecedented systems or systems are being developed that radically differ from those 
currently in use, the approach named “form follows function” is applied.  The first function to 
identify stems from the need, which is then decomposed into lower levels of needed 
functionality.  The functional description is translated into the physical by assigning functionality 
to requirements and requirements into a Physical Architecture.  While function names may be 
allocated to specific Physical Architecture entities directly, it is often the case that some 
combination of two or more architectural entities accomplishes one function.  The FAA 
preference is to translate functions into primitive performance requirements and then allocate 
these performance requirements to physical architecture entities.  

4.4.1.1 Functional Analysis Objectives 
The Functional Analysis process helps to ensure that: 

• All facets of a system’s lifecycle, as illustrated in Figure 4.4-1, are covered from 
development to production, operation, and support 

• All functional elements of the system are described, recognized, and defined 

• All system concepts and requirements for specific system functions are related 

• Requirements definition is improved  

• Product integration is improved 

• New and innovative designs and solutions are incorporated 

4.4.1.2 Process Overview 
Functional Analysis examines a system’s functions and subfunctions that are necessary to 
accomplish the system’s operation or mission.  It describes what the system does, not how it 
does it.  Functional Analysis is conducted at the level needed to support later synthesis efforts, 
with all operational modes and environments included.  Each function required to meet the 
operational needs of a system is identified and defined; once defined, the functions are then 
used to define the system requirements, and a functional architecture is developed based on 
the identified requirements.  The process is then taken to a greater level of detail as the 
identified functions are further decomposed into subfunctions, and the requirements and 
physical architecture associated with those functions are each decomposed as well.  This 
process is iterated until the system is completely decomposed into basic subfunctions, and each 
subfunction at the lowest level is completely, simply, and uniquely defined by its requirements.  
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In this process, the interfaces between each of the functions and subfunctions are fully defined, 
as are the interfaces with the environment and external systems.  The functions and 
subfunctions are arrayed in a Functional Architecture to show their relationships and interfaces 
(internal and external).  Figure 4.4-2 illustrates the Functional Analysis process flow.  
Functions shall be:  

• Arranged in their logical sequence  

• Well defined in their inputs, outputs, and functional interfaces (internal and external)  

• Traceable from beginning to end conditions  

• Analyzed, determined, and defined for time-critical requirements 

• Successively established from the highest to lowest level for each function and interface 

• Defined in terms of what needs to be accomplished in verb–noun combinations without 
describing how it is to be accomplished 

• Traceable downward through successive functional decompositions 
 

 
Figure 4.4-2.  Functional Analysis Process Flow and Interface with  

Physical Architecture and Requirements  

It is recommended that the Functional Analysis process be conducted in conjunction with 
Requirements Management (Section 4.3), Synthesis (Section 4.5), and Trade Studies (Section 
4.6) (Figure 4.4-3) to: 
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• Define successively lower-level functions required to satisfy higher-level requirements 
and to define increasingly detailed sets of Functional Architectures 

• Define mission- and environment-driven performance requirements and determine that 
higher-level requirements are satisfied 

• Flow down performance requirements and design constraints 

• Refine the definition of product and process solutions 
4.4.2 Inputs to Functional Analysis 
The more that is known about a system, the more complete the Functional Architecture.  At the 
highest level of Functional Analysis for the FAA (the National Airspace System (NAS)), only the 
Mission Need Statement (MNS) may be available as input.  The needs reflected in the MNS are 
translated into a Concept of Operations (CONOPS).  A CONOPS is a high-level form of 
Functional Analysis that is solely derived from the user’s perspective.  It is recommended that 
the CONOPS serve as a baseline for the more detailed Functional Analyses to follow.  
(Paragraph 4.4.4.2 provides more information on CONOPS.)  As iterations progress, it is 
recommended that higher-level Physical Architectures and Requirements be considered as they 
become available.  If the output of the Requirements Management (Section 4.3) task is 
incomplete, the Functional Analysis task reveals missing Requirements and helps to refine or 
clarify others.  Figure 4.4.3 depicts Functional Analysis’s process flow, while Figures 4.4-4 and 
4.4-5 illustrate several representative inputs and outputs to/from Functional Analysis.    
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Figure 4.4-3.  Functional Analysis Process Flow 
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 Figure 4.4-4.  Several Representative Inputs to Functional Analysis 

Figure 4.4-5.  Several Representative Outputs of Functional Analysis 
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• NAS Level (and program, if available) System Engineering Management Plan  

• Defined NAS capability shortfalls and/or needs in the MNS (including validated needs 
statement) 

• Requirements, such as any existing specifications and standards requirements, 
including requirements documents (reference documents) 

• Program decisions (such as Constraints relating to existing hardware and software) 

• Existing Physical Architectures 

• Higher-level Functional Architectures 

• Information on interfaces, including Interface Control Documents  

• Design Analysis Reports 

• Analysis Criteria  
4.4.3 Functional Analysis Process Tasks 
The Functional Analysis process is summarized in Figure 4.4-1.  The five major process tasks 
listed in Figure 4.4-1 are described in the remainder of this section. 
4.4.3.1 Task 1:  Define Top-Level Functions (From Inputs) 
The first task in defining the system from a functional standpoint is to review the MNS, existing 
Operational Services and Environmental Descriptions (OSED), and any existing requirements 
documents to ensure a complete understanding of the top-level system missions/functions, 
environments, Requirements, and imposed Constraints.  The MNS defines the needs the 
system is expected to meet.  The CONOPS is developed from the MNS and normally includes 
an OSED.  (The OSED is defined in Paragraph 4.4.4.2.1.)  A system understanding from the 
perspective of these documents ensures that the system’s relationship to its environment and 
external systems is considered during the development of the primary system functions. 
Figure 4.4-6 is a simplified example of an MNS and CONOPS for an office requiring the 
capability to record and store information from a computer.  This example is used only to 
develop a sample functional flow diagram (FFD) (Paragraph 4.4.3.2.2.1).  An actual MNS and 
CONOPS include much greater detail.  

 
Figure 4.4-6.  Mission Need Statement and Concept of Operations 
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The system’s primary mission(s) is defined using the MNS and any available system 
descriptions, such as the OSED, the system’s Requirements, and Constraints.  This mission(s) 
is the primary function that the system fulfills, and it is named using the guidelines and naming 
convention described in the “Introduction to Functional Analysis” (Paragraph 4.4.1). 
In addition, the internal and external interfaces (including ambient and operational 
environments) of the system are identified, and the functional relationships are defined.  In the 
next task, these relationships are depicted through structured analysis using sequence 
diagrams, FFDs, and N2 diagrams, which meet nearly all FAA program needs.  In these 
depictions—examples of which appear in Figures 4.4-9 through 4.4-20—a large rectangular box 
represents the system, and the smaller boxes represent external elements outside of the main 
system.  Flow arrows represent interfaces between the system and the external elements that 
describe which external element the system is transmitting to/receiving from and what data is 
being transmitted/received.  Figure 4.4-7 shows the standard symbols used in these diagrams.  
(“Functional Analysis Tools and Techniques” (Paragraph 4.4.5) provides other techniques that 
may be used with approved tailoring to the process.) 

 Figure 4.4-7.  Symbology Template for Functional Flow Diagramming  

In Task 1, the necessary functions that provide the required capabilities of the system, as 
specified by the need or Requirements, are defined.  The activity represented by each of the 
functions shall be well defined, able to be implemented, and testable; and the interfaces to other 
functions shall be as simple as possible.  It is recommended that these functions be developed 
with an eye toward the conversion of the Functional Architecture into Requirements and 
Requirements into a Physical Architecture.  The development of complementary Functional and 
Physical Architectures requires multiple iterations between Functional Analysis, Requirements 
Management (Section 4.3), and Synthesis (Section 4.5).  
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Figure 4.4-8 lists functions based on the example MNS and CONOPS depicted in Figure 4.4-6.  
There are many approaches to describe these functions.  The main criterion for task completion 
is a comprehensive list of the functions the system has to perform in order to meet its mission.  
For this task, the list does not need to follow a logical order. 

 
Figure 4.4-8.  List of Primary Functions 

An analysis of operations and environment may be tailored to represent the available source of 
information.  If detailed references to environmental data are absent in the initial Requirements 
Documents, Quality Function Deployment or other methods described in Requirements 
Management may be used as supplements to elicit the information necessary to support follow-
on Physical Architecture and Requirements tasks.  
Affirmative answers to the following questions signify completion of Task 1: 

• Have all missions, phases, and modes of operation been considered for the system? 

• Have all functional elements been properly identified? 

• Have all functional interfaces of the system to and from the environment been 
adequately identified and listed (physical/functional interface, connection parameters 
and modes, etc.)? 

• Have the results of this review been captured in a list that identifies the system’s mission 
and primary functions as well as interfaces with other systems and the environment? 

4.4.3.2 Task 2:  Organize Functions Into Logical Relationships 
The function list developed in Task 1 serves as an input to Task 2.  The function list includes the 
central functions required for the system to accomplish its mission, but the list is not necessarily 
arranged in a sequence or logical relationship.  During Task 2, the functions are arranged in at 
least one of the primary logical flow diagrams, which are applicable to most programs and 
indicate relationships based on function sequence and/or functional flow (input-function-output).  
The arrangement of the functions includes independent functions in parallel and dependent 
functions in series (e.g., when completion of the upstream function is necessary in order to 
begin the downstream function).  A discussion of other techniques (used only when tailoring is 
approved) is included in “Functional Analysis Tools and Techniques” (Paragraph 4.4.5).  
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– Store output information
– Retrieve stored output information
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4.4.3.2.1 Sequence Relationships 
The sequence family of relationships includes both sequence and timing.  Sequence 
relationships shall be used if sequence or timing is critical to the overall system function and 
when the relationships are simple.  When sequencing is selected, the functions are arranged in 
order of sequence (i.e., preceding functions depicted before subsequent functions).  
4.4.3.2.1.1 Network Diagrams 
Sequence relationships may be depicted as network diagrams.  These diagrams shall be used if 
sequence is important to the function operation, but timing is not necessarily critical.  Network 
diagrams display functions and sequential dependencies in a network format.  A box (called a 
node) represents each function, and a line connecting two boxes represents the sequential 
dependency between the two functions.  Figure 4.4-9 depicts a simple network diagram.  Some 
analysts apply an action on line pattern, where the nodes represent events that partition the 
actions (on the lines) into time frames.  

 

 
Figure 4.4-9.  Depiction of a Sequence Relationship Using a Network Diagram  

4.4.3.2.1.2 Time Line Sequence Diagrams 
Another way to organize functions in sequence is to use time line sequence diagrams.  A time 
line sequence diagram depicts each function as a line or rectangle on a chart similar to a Gantt 
chart.  The functions are stacked with preceding functions depicted to the upper left of 
subsequent functions.  Time line sequence diagrams shall be used when a sequence 
relationship is selected, and timing is critical to the function operation.  Figure 4.4-10 depicts a 
simple graphical deterministic time line sequence diagram. 
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Time line sequence analysis considers functional durations and provides a more definitive 
description of the functional sequences than network diagrams are able to convey.  It 
graphically depicts the concurrence, overlap, and sequential relationships of functions and 
related tasks.  Time line sequence analyses are important in the tradeoff process between man 
and machine, including decisions regarding manual and automatic methods and allocation of 
times to subfunctions.  In addition to defining subsystem/component time requirements, time 
line sequence analysis is used to develop Trade Studies (Section 4.6) in areas other than time 
considerations (e.g., is the spacecraft location to be determined by the ground network or by 
onboard computation using navigation satellite inputs?).  Figure 4.4-11 depicts a maintenance 
time line sheet (TLS) that shows that the availability of an item (distiller) is dependent upon the 
concurrent completion of numerous maintenance tasks.  Furthermore, the figure illustrates the 
traceability to higher-level requirements by referencing the appropriate FFD. 
 

Figure 4.4-11.  Time Line Sheet for Maintenance of a Distiller 

Time line sequence analysis is performed on areas where time is critical to mission success, 
safety, utilization of resources, minimization of downtime, and/or increasing availability.  The 
following areas are often categorized as time-critical:  

• Functions affecting system reaction time 

• Mission turnaround time 

• Time countdown activities 

• Functions requiring time line sequence analysis to determine optimum equipment and/or 
personnel utilization 

Time line sequence analysis supports the development of design requirements for operation, 
test, and maintenance functions (additional techniques such as mathematical models and 
computer simulations may be necessary).  In addition, the TLS is used to perform and record 
the analysis of time-critical functions and functional sequences.  For time-critical functional 
sequences, it is necessary to specify the time requirements with associated tolerances.  
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4.4.3.2.2 Functional Flow (Input-Function-Output) Logical Relationships 
The FFD family consists of a group of analyses that depicts functional (input-function-output) 
relationships between functions.  This family includes the Department of Defense standard 
FFDs, N2 diagrams, Integrated Definition for Function Modeling (IDEF) techniques, which are 
described in the following paragraphs, and the Unified Modeling Language (UML), which is 
described in Paragraph 4.4.5.2.6.2.  
4.4.3.2.2.1 Functional Flow Diagrams 
The FFD, the FAA’s recommended technique for Functional Analysis, is a multi-tier, time-
sequenced step-by-step diagram of the system’s functional flow.  FFDs usually define the 
detailed, step-by-step operational and support sequences for systems, but they are also used 
effectively to define processes in developing and producing systems.  The software 
development processes also use FFDs extensively.  In the system context, the functional flow 
steps may include combinations of hardware, software, personnel, facilities, and/or procedures.  
Although functional flow relationships are more complicated, they also convey more information 
than sequence diagrams.  In the FFD method, the functions are organized and depicted by their 
logical inputs and outputs.  Each function is shown in relation to the other functions by how the 
inputs and outputs feed and are fed by the other functions.  A node labeled with the function 
name depicts each function.  Arrows leading into the function depict inputs, while arrows leading 
out of the function depict outputs.  Figure 4.4-12 depicts the output of function F0 as an input to 
function F1.  

 

 
Figure 4.4-12.  Functional Flow Relationship 

With FFDs, the function is the machine or process that uses inputs to produce outputs.  To 
illustrate: If a turbine engine is the system, then the function is the conversion of oxygen and 
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elements needed for the function to operate correctly; the production of mechanical energy 
using a turbine engine requires oxygen and fuel.  Therefore, oxygen and fuel are inputs to that 
function.  Inputs are depicted as arrows leading into the functional node with the input arrows 
labeled appropriately.  The output is the product of the function.  In Figure 4.4-13, the engine 
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function generates the “Torque/Thrust.”  The output is depicted as the arrow leading out of the 
functional node with the output arrow labeled appropriately. 
 

 
Figure 4.4-13.  Input-Function-Output Relationship 
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The functions depicted so far have been serial functions; however, many functions are parallel 
(i.e., they are functions that (1) independently feed the same downstream function, and/or (2) 
occur simultaneously).  Figure 4.4-14 illustrates parallel functions.  
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Figure 4.4-15 depicts a functional flow organization of the functions, in which functions are 
broken down into subfunctions using the techniques described in Task 2.  This figure represents 
a simplified FFD, in which the inputs and outputs are not labeled, and the controls and 
mechanisms are not identified.  Functional Analysis is performed to the level of detail needed to 
depict the functional description of the system. 
Figure 4.4-15 also shows multiple functional levels; however, only the top level is complete.  
Each lower level shows an example expansion of one function.  For example, at the second 
level, the top-level function F1 is expanded into its second-level functions, F1.1 through F1.6.  
At the third level, second-level function F1.4 is expanded.  Finally, at the fourth level, function 
F1.4.3 is expanded.  Each level indicates a different example of typical functional flow paths.  
Usually, only one or two levels are shown in one diagram to avoid confusion. 

 

 
Figure 4.4-15.  Generic Functional Flow Diagram Example 

Adherence to the following rules promotes common understanding of FFDs: 

• Number top-level functions with even integers and zero decimals (e.g., 1.0, 2.0, etc.) and 
cover the complete span of anticipated lifecycle functions 

• Depict inputs to functions as entering from the left side and outputs as leaving from the 
right side  

• Depict mechanisms as entering from the bottom and controls as entering from the top 

• Display lower-level functions as emanating from the bottom 

• Define the name of the function inside the box, replacing F1, F2, etc. 

• Indicate a reference function (ref) at the beginning and end of all functional sequences, 
except at the top level 
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• Use an “OR” gate to indicate alternative functions; use an “AND” gate to indicate 
summing functions, where all functions are required (Figures 4.4-7 and 4.4-16) 

• Indicate a “GO” “NO GO” sequence with an arrow leaving the right side of the function 
with the letter “G” for “GO” and an arrow out the bottom with “G-bar” for “NO GO”  

• As is customary, when the second level or lower level is shown on a separate page, list 
the title of the function at the top center of the page for reference 

• Typically, do not show the information flow, content of each functional step, and timing 
details on FFDs 

Figure 4.4-16.  Functional Flow Diagram Example 

4.4.3.2.2.2 Functional N2 Diagrams 
The N2 diagram is a systematic approach to identify, define, tabulate, design, and analyze 
functional and physical interfaces.  A functional N2 diagram depicts the interfaces between 
functions in a system.  The N2 diagram is a visual matrix that requires the user to generate 
complete definitions of the system functional interfaces in a rigid, bidirectional, fixed framework.  
A basic N2 diagram is illustrated in Figure 4.4-17. 
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Figure 4.4-17.  Functional N2 Diagram 

The N2 diagram customarily is used to develop data interfaces, primarily in the software areas; 
however, it also may be used to develop other interfaces, including functional and physical 
interfaces.  In this method, the system functions are placed on the diagonal axis; the remainder 
of the squares in the N x N matrix represents the interface inputs and outputs.  The presence of 
a blank square indicates that there is no interface between the respective system functions.  
Data flows in a clockwise direction between functions (i.e., the symbol F1 ! F2 indicates data 
flowing from function F1 to function F2; the symbol F2 " F1 indicates the feedback).  The 
transmitted data is defined in the appropriate squares.  The diagram is complete when each 
function has been compared to all other functions.  The N2 diagram may be used in 
successively lower levels down to the component functional level.  
N2 diagrams are a valuable tool for not only identifying functional interfaces, but also for 
pinpointing areas where conflicts may arise between functions so that system integration 
proceeds smoothly and efficiently. 
4.4.3.2.2.3 Integrated Definition for Function Modeling Diagrams 
IDEF is a common modeling tool for conducting analysis, development, and integration of 
information technology systems and software engineering analysis.  Whereas FFDs show the 
functional flow of a product, IDEF diagrams show: 

• Data flow 

• System control 

• Flow of lifecycle processes 
The U.S. Air Force originally developed IDEF for manufacturing planning.  IDEF is a compound 
acronym that stands for Integrated Computer-Aided Manufacturing Definition.  Originally called 
IDEF, other IDEF languages have since been developed, forcing the languages to adopt 
numbering system; thus, this technique is now called IDEF 0.  IDEF 0 has demonstrated an 
ability to depict a variety of engineering, operational, manufacturing, and other types of 
processes at any level of detail.  It provides disciplined, rigorous, and precise descriptions while 
promoting standardization in use and interpretation. 
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IDEF is a model composed of a hierarchical series of diagrams, text, and a glossary that are 
cross-referenced.  The two primary modeling components are functions and data objects that 
interrelate the functions.  As shown in Figure 4.4-18 (IDEF box format), the position at which the 
arrow attaches to a box conveys the role of the data object interface.  These roles consist of: 

• Input 

• Mechanism 

• Output 

• Control 

 
Figure 4.4-18.  Integrated Definition for Function Modeling Function Diagram 

The inputs, the data objects acted upon by the function or operation, enter from the left.  The 
mechanism (additional support to perform the function) arrow attaches to the box from the 
bottom.  The outputs of the function leave the function box from the right.  The controls enter the 
top of the box. 
The IDEF process begins with the identification of the prime function to be decomposed.  This 
function is identified on a top-level context diagram that defines the scope of the particular IDEF 
analysis.  Figure 4.4-19 illustrates a top-level context diagram for an information system 
management process.  From this diagram, lower-level diagrams are generated.  An example of 
a derived diagram—called a “child” in IDEF terminology—for a lifecycle function is shown in 
Figure 4.4-20. 
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Figure 4.4-19.  Top-Level Context Diagram 

 
Figure 4.4-20.  Derived Diagram (“Child” in 

 Integrated Definition for Function Modeling Terminology) 

Affirmative answers to the following questions signify completion of Task 2:  

• Are all functions in the function list depicted? 

• Are all functions written in the form verb–noun format? 

• Are all functional interfaces depicted graphically? 
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• Does the depiction show end-to-end functional relationships? 

• Are parallel and serial relationships accurately depicted? 
4.4.3.3 Task 3:  Decompose Higher-Level Functions Into Lower-Level Functions 
In this task, higher-level functions are decomposed into subfunctions, with specificity increasing 
at each level of decomposition.  Functional decomposition is performed using the techniques 
described in Tasks 1 and 2 with respect to sequence and logical diagramming or alternatively 
with the techniques described in “Functional Analysis Tools and Techniques” (Paragraph 4.4.5).  
The stepwise decomposition of a system basically is a top-down approach to problem-solving.  
Shown graphically in Figures 4.4-21 through 4.4-24, the decomposition is carried to a level at 
which the functions have been totally decomposed into basic subfunctions, and each 
subfunction at the lowest level is completely, simply, and uniquely defined by its Requirements.  
This means that functional decomposition continues as long as there is a further need to define 
lower-level Requirements.  When the requirements development process ceases, Functional 
Analysis may cease. 
The objective of Task 3 is to develop a hierarchy of Functional Analysis diagrams that describes 
the functions at all levels of the system.  This hierarchy is only a portion of the Functional 
Architecture, which is not complete until all Requirements and other Constraints have been 
appropriately decomposed. 
 

 
Figure 4.4-21.  Decomposition of Higher-Level Functions into Lower-Level Functions 

 

Ti
m

e 
or

 p
ro

gr
am

 p
ha

se

Requirements

ArchitectureFunction
(Level 1)

Requirements

Ph
ys

ic
al

NAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n) Requirements ArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Ti
m

e 
or

 p
ro

gr
am

 p
ha

se

Function

NEED

NAS CONOPS
OSED

Requirements

ArchitectureFunctionFunction Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

(System 
CONOPS) (MNS)

Ti
m

e 
or

 p
ro

gr
am

 p
ha

se

Requirements

ArchitectureFunction
(Level 1)
Function
(Level 1)

Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Ti
m

e 
or

 p
ro

gr
am

 p
ha

se

Function

NEED

NAS CONOPS
OSED

Requirements

ArchitectureFunctionFunction Requirements

Ph
ys

ic
al

NAS ArchitectureNAS Architecture
Defines

Defines

Define

Refine Refine

Constrain
Decompose

Function
(Level n)
Function
(Level n) RequirementsRequirements ArchitectureArchitectureRefineRefine

Derive
Decompose

Constrain

Constrain

Constrain

(System 
CONOPS) (MNS)



NAS SYSTEM ENGINEERING                                                                                                          SECTION 4.4                            
VERSION 3.0 09/30/04                                                                                                                                                                     

4.4-21 

Figure 4.4-22.  Another View of Decomposition of Higher-Level  
Functions into Lower-Level Functions 

Task 3 is performed iteratively using the steps and techniques described in Tasks 1 and 2.  
Since higher-level functions exist for this task, the subfunctions are based on the higher-level 
functions developed in the previous tasks.  In Figure 4.4-23, which uses the functions list from 
Figure 4.4-8, function F3 is decomposed into subfunctions labeled as the second level.  Next, 
the functions in the second level are further decomposed to the third level.  This process 
continues until all the functions are totally decomposed into basic subfunctions, and each 
subfunction at the lowest level is completely, simply, and uniquely defined by its Requirements.  
At each level, Functional Analysis feeds Requirements Management (Section 4.3) and 
Requirements feeds Synthesis (Section 4.5), as shown in Figure 4.4-21 and further illustrated in 
Figures 4.4-24 through 4.4-27. 

Figure 4.4-23.  Higher-Level Functions Broken Down into Lower-Level Subfunctions 
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Figure 4.4-24.  Functions Lead to Requirements; Requirements Lead to Physical Architectures 

Requirements Management and Synthesis detail the process that turns functions into 
Requirements and Requirements into a Physical Architecture.  It is important to note that the 
next Functional Analysis level is bound and framed by the Requirements and Physical 
Architecture refined from the preceding Requirements Management and Synthesis activities 
(Figure 4.4-25). 

Figure 4.4-25.  Requirements and Physical Architecture Frame the Next Functional Analysis Level 

When this spiral process completes one rotation, the Functional Analysis process recommences 
(Figures 4.4-26 and 4.4-27) at the next lower level and repeats until each function is totally 
decomposed into its basic subfunctions, and each subfunction at the lowest level is completely, 
simply, and uniquely defined by its Requirements. 
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Affirmative answers to the following questions signify completion of Task 3: 

• Has a complete set of Functional Analysis diagrams been prepared? 

• Has each function been decomposed to its lowest level within program needs? 

• Is each function completely, simply, and uniquely defined by its Requirements? 

• Has a description of each function been developed? 

• Is the requirements development complete? 

 
 

Figure 4.4-26.  Repeating the Functional Analysis Process at the Next Lower Level 
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Figure 4.4-27.  Preceding Requirements and Physical Architectures  
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the objective of Task 4 is to select those decompositions that promote straightforward 
Requirements that may be validated and verified.  (Validation and Verification (Section 4.12) 
further addresses this issue.)  In addition, decompositions that allow a single function to be used 
at several places within the hierarchy, thereby simplifying development, may be identified. 
Task 4 requires “best engineering judgment,” as the “goodness” of each functional 
decomposition is evaluated by measuring the degree to which each module displays the 
following attributes: 

• Performs a single function  

• Is a logical task  

• Leads to a Requirement(s) that may be separately validated  

• Has a single input point and a single output point  

• Is independent within each level of the hierarchy (higher independence allows the 
implementation of the module independent of the other modules) 

Because system design does not occur in a vacuum, it is necessary to consider opportunities to 
use COTS or NDI hardware and software.  As a result, a subfunction that has already been 
implemented in a compatible form on another system may be preferred to one that has not. 
The selection of a final system functional decomposition signifies completion of Task 4.  
4.4.3.5 Task 5:  Document Functional Analysis Baseline 
The last task in the Functional Analysis process is documenting the process, including the 
selected Baseline as the basis for Requirements Management (Section 4.3) and Synthesis 
(Section 4.5).  The documentation includes the outputs listed in Figure 4.4-1.  At this point, any 
necessary revisions or changes to the functional decomposition, sequence and time lines, 
functional interfaces, etc., are made to ensure their completeness and consistency with one 
another.  Also, the products of the Functional Analysis process (e.g., FFDs, functional 
descriptions, function interface descriptions, and time lines) are developed.  These products 
may be documented separately or combined in a Functional Analysis Document (FAD). 
Affirmative answers to the following questions signify completion of Task 5: 

• Have all of the initial functions been decomposed into subfunctions? 

• Do the subfunctions cover the total scope of the parent function? 

• Are the functions arranged correctly with respect to the dependence of the functions? 

• Have all functional interfaces been defined? 

• Have any new functional interfaces between initial functions been identified that were 
discovered during the function decomposition process?  (These may drive new system 
element interfaces.)  If so, have the new interfaces been documented in control sheets? 

• Has a Functional Analysis document been prepared to document the functional 
Baseline? 

• Have all functional Requirements been identified and decomposed? 
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4.4.4 Outputs of Functional Analysis 
4.4.4.1 Functional Architecture 
The most common output of the Functional Analysis process is a “living” Functional Architecture 
document that contains a tailored combination of the following: 

• Functional Architecture Baseline  

• Functional interface list 

• Alternative decompositions 

• FFDs 

• Functional time lines and sequences 

• Data flow diagrams (DFD) and threads 

• N2 diagram 

• Other functional descriptions 
4.4.4.2 Concept of Operations 
In addition to the previous list, the CONOPS may also be an output of the Functional Analysis 
process.  A CONOPS is a user-oriented document that describes system functional 
characteristics for a proposed system from the user’s viewpoint; it is essentially a top-level 
narrative Functional Analysis.  It explains the existing system, current environment, users, the 
interaction among users and the system, and organizational impacts.  The CONOPS document 
is written in order to communicate overall quantitative and qualitative system characteristics to 
the user, buyer, developer, and other organizational elements.  The CONOPS aids in 
requirements capture and communication of need to the developing organization.  Posing the 
need in the user’s language helps to ensure that the user is able to more accurately express the 
problem.  Subsequently, the system engineers have a better foundation upon which to begin the 
lower-level Functional Analyses, requirements definition, and initial design of the system. 
Not all CONOPS are written as functional analysis documents.  In these cases, the CONOPS 
would be an input to Functional Analysis rather than an output. 
The following is a list of the essential elements indicative of all CONOPS: 

• Description of the current system or situation 

• Insight into the user’s environment 

• Description of the functions to be performed 

• Description of the needs that motivate development of a new system or modification of 
an existing system 

• Insight into the new Requirements 

• Opportunity for the developer to recommend alternative solutions 

• Description of the operational features of the proposed system 

• User’s view of the Requirements 
At minimum, there are two levels of CONOPS: (1) NAS Level and (2) System Level CONOPS.  
 



NAS SYSTEM ENGINEERING                                                                                                          SECTION 4.4                            
VERSION 3.0 09/30/04                                                                                                                                                                     

4.4-27 

A NAS Level CONOPS is performed at the highest level of the Functional Analysis process and 
is a narrative expression of the user’s desired change with some performance indicators.  It is a 
high-level document that indicates, from the user’s perspective, the desired end-state for the 
respective system in the NAS.  
A System Level CONOPS is an extension of a NAS Level CONOPS with an emphasis on a 
particular system.  It is more detailed and substantial, but it is still an expression of the user’s 
needs with respect to a specific system within the NAS.  It is recommended that a System Level 
CONOPS, in particular, have the following characteristics: 

• Written in the user’s language using the user’s preferred format 

• Written in narrative prose (in contrast to a technical requirements specification) 

• Organized so as to tell a story and accompanied by visual forms (diagrams, illustrations, 
graphs) and storyboards whenever possible 

• Provide a bridge between the user’s needs and the developer's technical requirements 
documents 

• Describe the user’s general system goals, mission, function, and components 

• Evoke the user’s views and expectations 

• Provide an outlet for the user’s preferences 

• Provide a place to document vague and unmeasurable Requirements (i.e., the user is 
able to state his/her desire for fast response or reliable operation); these desires are 
quantified during the process of developing the requirements specifications and during 
the flowdown of Requirements to the Physical Architecture 

• Make the user feel in control 
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Figure 4.4-28 serves as a guideline for System Level CONOPS content. 

 
Figure 4.4-28.  Content Format for a System Level Concept of Operations  

4.4.4.2.1 Operational Services and Environmental Description  
The OSED is a comprehensive, holistic Communications, Navigation, and Surveillance/Air 
Traffic Management system description.  It describes the services, environment, functions, and 
mechanizations that form a system’s characteristics.   
 “What Is a System?” A system (as defined in Section 2.1) is:  

An integrated set of constituent pieces that are combined in an operational or 
support environment to accomplish a defined objective.  These pieces include 
people, hardware, software, firmware, information, procedures, facilities, 
services, and other support facets. 

The 5M Model, illustrated in Figure 4.4-29, graphically represents this system view.  Useful 
system descriptions exhibit two essential characteristics: correctness and completeness.  
Correctness in a system description means that the description accurately reflects the system 
with an absence of ambiguity or error in its attributes.  Completeness means that no attributes 
have been omitted and that the attributes stated are essential and appropriate to the level of 

 1.  Introduction 
a.   System overview 
b.   Definition of terms 
c.  References 

2.  Operational need 
a.  Operational problems solved
b.  Opportunities created 
c.  Existing operations/functions that require change
d.  Organization constraints 
e.  Actors that will interact with system

3.  System justification 
a. Capability shortfalls of current system
b. Potential benefits of new system
c. Identi fied priorities of new features

i.    Critical 
ii.   Essential 
iii.  Routine 

d.  Assumptions and constraints
4.  OSED (include if available) 
5.  Business impact 

a.  Impact on current business operations
b.  Changes to organization 
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detail called for in the description.  System descriptions that include all 5M Model elements 
achieve these two characteristics.  
The 5M Model states that there are five basic integrated elements in any system.  These 
elements are (1) the functions that the system needs to perform; (2) the human operators and 
maintainers; (3) the equipment used in the system, composed of the hardware and software; (4) 
the procedures and policies that govern the system’s behavior; and (5) the environment in which 
it is operated and maintained. 

Figure 4.4-29.  5M Model 

 
RTCA/DO-264, Annex C, contains detailed guidelines for the OSED for use as a starting point.  
For the purposes of SE in the FAA, these guidelines were tailored.  It is recommended that an 
OSED have, at minimum, the information in Figure 4.4-30. 

 
 

MEDIA:
Environment (operational

and ambient)

Machine:
Hardware and 
software used in 
the system

Man:
(non-gender specific)
These are the people 

who operate and maintain the
system

Management:
These are the 

procedures and 
policies that guide
operations in the 

system    

Mission:
These are the 

functions that the 
system must 

perform
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Figure 4.4-30.  Guidelines for an Operational Services and Environmental Description  

4.4.4.3 Concerns/Issues 
Appendix D contains guidance on concerns/issues as a product of Functional Analysis. 
4.4.4.4 Tools/Analysis Requirements 
Tools/Analysis Requirements for performing Functional Analysis throughout the remainder of 
the program’s lifecycle needs to be provided to the Integrity of Analyses process (Section 4.9).   
4.4.4.5 Planning Criteria 
Any Planning Criteria necessary for performing Functional Analysis throughout the remainder of 
the program’s lifecycle needs to be provided to the Integrated Technical Planning process 
(Section 4.2). 

 1.     Operation Service Description: This section of the OSED is used to summarily describe
the air traffic services and operational context of the new capability. This section describes
the new air traffic service from an operator’s viewpoint.

2.   Functional description or architecture: This section describes the functions and Functional
Architecture in accordance with Functional Analysis.   

3.   Procedures: This section describes the existing and new procedures and policies that
govern the system’s operation or maintenance and includes:
a.  Operational requirements and regulations, including separation minima 
b.  Deployment requirements 
c.  Operational scenarios 

4.   Human elements of the system: This section describes the operators and maintainers of
the system, including information regarding:
a.   Anthropometric requirements
b.  Training requirements 
c.  Specific skill set requirements
d.  Human-system integration requirements

5.   Equipment and software: This section describes any known hardware and software that is
required for system operation . This section, in particular, may not be appropriate in the
early stages of development. 

6.   Environment description: This section is an expression of the various conditions in which
the system is operated, including:
a.   Operational: The operation al environment includes factors,  such as traffic density and

flow, flight phases, traffic complexity, route configuration, type of control, use of visual
or instrument flight rules, etc.

b.  Ambient: The ambient conditions refer to visual and instrument meteorological
conditions, altitudes, terrain elevations, and physical conditions, such as 
electromagnetic environment effects, precipitation, icing, etc.

7.   Nonfunctional requirements: This section describes any other Requirements that are not
covered in the other sections and includes, but is not limited to, the following: 
a.  Time constraints 
b.  Information exchanges 
c.  Exception handling 



NAS SYSTEM ENGINEERING                                                                                                          SECTION 4.4                            
VERSION 3.0 09/30/04                                                                                                                                                                     

4.4-31 

4.4.4.6 Constraints 
Constraints on trade studies that surface as a result of performing Functional Analysis are to be 
provided to the Trade Studies process (Section 4.6).   
4.4.5 Functional Analysis Tools and Techniques 
Contractors working for the FAA may choose to employ structured analysis models rather than 
the FFDs preferred by FAA.  To facilitate communication between FAA system engineers and 
these contractors, it is recommended that FAA system engineers understand these models in 
order to engage in technical conversations with contractors who employ them. 
4.4.5.1 Tools 
Analysis tools may include but are not limited to general SE and design/simulation aids.  
Because requirements represent the basic thread through SE, Functional Analysis data shall be 
interoperable with requirements definition information.  The results of the Functional Analysis 
process shall be captured in order to modify system requirements and other derived products. 
The selection of tools shall ensure that the data is transportable and able to be integrated with 
other related Functional Analysis results.  A list of tools that may be used to perform Functional 
Analysis is available on the International Council on System Engineering Web site  
(www.incose.org). 
4.4.5.2 Techniques 
In addition to the techniques described in “Task 2: Organize Functions Into Logical 
Relationships” (Paragraph 4.4.3.2), this paragraph covers several alternative approaches that 
FAA system engineers may come in contact with from organizations that apply techniques other 
than FFDs.  These techniques are provided in order to cover two issues: (1) cases in which time 
line sequence diagrams and FFDs do not adequately address FAA needs; and (2) cases in 
which contractors use these techniques to perform Functional Analysis, and the FAA engineers 
need to understand what they mean.  The alternatives include the following: 

• Hierarchical functional block diagramming 

• Modern structured analysis 

• Models and simulation 

• Thread analysis 

• Object-oriented analysis (OOA) 
4.4.5.2.1 Hierarchical Functional Block Diagramming 
By listing the functions for an expansion of one block on a higher-tier block diagram, the 
engineer is actually engaging in function outlining, which is equivalent to hierarchical block 
diagramming.  Rather than building sequences of functions in FFDs, the engineer may build an 
indentured list or hierarchy of functions where, in order to accomplish a particular function, it is 
necessary to complete the immediate lower-tier functions first. 
Generally, this process is easier to follow than a sequence-oriented model.  Thus, the question 
arises: Why build a sequence- or flow-oriented diagram when the goal is a hierarchical physical 
architecture?  It is easier for system engineers to move from a hierarchical functional diagram to 
a hierarchical architecture diagram than from a sequence-oriented functional diagram to a 
hierarchical physical architecture diagram.  However, therein lies the problem.  Engineers 
employing hierarchical functional diagrams often define a functional architecture based on the 
last physical architecture they worked on, which generally causes a one-to-one correspondence 

http://www.incsoe.org/
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between their functional and physical architectures.  The danger in this approach is the potential 
for the engineer to fail to consider all of the alternative implementations of the needed 
functionality and, subsequently, miss opportunities to take advantage of new technology.  It is 
more difficult to move from a sequence-oriented functional model to a hierarchical physical 
architecture diagram; however, that difficulty encourages a more comprehensive examination of 
methods to implement exposed functionality. 
4.4.5.2.2 Modern Structured Analysis  
Modern structured analysis offers a more free-form analytical environment than the block-
oriented models.  The modern structured analysis model is constructed using DFDs that feature 
bubbles rather than blocks, a data dictionary (DD), and process specifications (p-spec). 
4.4.5.2.2.1 Data/Control Flow Diagrams and Context Diagrams 
Data/control flow diagrams (D/CFD) graphically model the processes that transform data/control 
in a system.  These diagrams model the system’s work as a network of activities that accept 
and produce data/control messages.  Alternatively, they are also used to model the system’s 
network of activities as work accomplished on a processor.  Each successive level of D/CFDs 
represents the internal model of the transformations contained in the previous level of D/CFDs. 
The context DFD—the ultimate DFD—consists of one bubble depicting the system connected to 
terminators drawn as blocks and named to identify the external inputs and outputs of the 
system.  The bubble of the context DFD is decomposed to expose more detailed needs of the 
system.  The lower-tier DFDs, of which there may be hundreds or even thousands for a complex 
problem, consist of only four objects: 

• Bubbles (drawn as simple circles) identify needed computer processing.  Bubbles have 
functionality that may be further decomposed in a lower-tier DFD or defined in a p-spec.  
P-specs are written only for the lowest-tier bubbles in the diagrams.  Needed product 
behavior may be explored and illustrated by structured English, tables, or state diagrams 
within the p-spec. 

• Directed line segments (arrows) show the flow of data between the bubble and 
temporary data stores. 

• Temporary data stores (represented by a pair of parallel lines) identify a need to 
temporarily store data created in a bubble or applied from outside the system. 

• Data sources and external inputs are represented by rectangles. 
Figure 4.4-31 illustrates the application of DFDs and the top-down decomposition process used 
to produce a system model. 
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Figure 4.4-31.  Data Flow Diagram 
 

Building a system model by interviewing users usually begins with the processes defined at the 
primitive level and data defined in forms and manual files.  Figure 4.4-32 illustrates part of a 
model built from user interviews.  After building the model, the next task is to organize the data 
flows logically and then collapse the lower-level functions into higher-level functions.  Figure  
4.4-33 illustrates a logically organized version of the model built from interviews. 
The DFD function titles, when wrapped in “shall statements,” become requirements statements. 
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Figure 4.4-32.  Primitive Data Flow from User Interviews 

 

 
Figure 4.4-33.  Logically Organized Data Flow 

4.4.5.2.2.2 Data Dictionary 
DDs are documents that provide a standard set of definitions of data flows, data elements, files, 
databases, and processes for a specific level of system decomposition.  These documents aid 
communication across the development organization.  The DD also defines data items 
mentioned in the transformation specifications.  For every data line and every data store 
illustrated on every DFD, a unique line in a DD that clearly defines the data item is required.   
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A DD defines the content of each data item, table, and file in the system.  P-specs describe the 
capabilities that each process is required to provide.  The specifications may be written in 
structured English and/or in the form of decision tables and decision trees.  State diagrams 
graphically depict the logical states that the system may assume.  Associated process 
descriptions specify the conditions that require fulfillment for the system to transition from one 
logical state to another. 
When working from a set of customer documents, a top-down approach is used to decompose 
customer-defined processes.  As each process is decomposed, so is the data.  Only the data 
that a process requires to produce the specified outputs is documented in a DD.  Functional 
decomposition usually proceeds to a level where the requirements for each lower-level function 
are stated on one page or less (i.e., the primitive level).  Interaction with the customer may be 
necessary to decompose and define data elements at lower levels.  
4.4.5.2.2.3 Process Specifications 
For every lowest-tier bubble in the DFD analysis, it is necessary to write a p-spec that contains 
the p-spec for the bubble.  This specification may be phrased in normal English text, structured 
English that follows a particular computer tool syntax, tables, state diagrams, or any 
combination of these constructs.  P-specs, at the primitive level, when wrapped with “shalls” 
subsequently become requirements statements. 
4.4.5.2.2.4 State Transition Diagram 
After the DFDs and DD are complete, the next step is to identify the various states the system 
may assume and to produce diagrams depicting how the system transitions between states.  It 
is suggested that a top-down approach, such as a state transition diagram (STD), be used to 
identify various states of the system, working down through the subsystem. 
An STD is a graphical model of the dynamic behavior of a system—it is a sequential state 
machine that graphically models the time-dependent behavior of a control transformation.  
Figures 4.4-34 and 4.4-35 are examples of STDs for system and subsystem functions.  
Descriptions of how the system transitions from one state to another become “shall statements” 
in the requirements document. 
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Figure 4.4-34.  State Transition Diagram for System Functions 

 

 
Figure 4.4-35.  State Transition Diagram for Subsystem Functions 

4.4.5.2.3 Hatley-Pirbhai Extension to Modern Structured Analysis 
Because the traditional modern structured analysis process has proven inadequate for modeling 
real-time systems, the Hatley-Pirbhai Extension to modern structured analysis was created.  
This model extended the requirements model of modern structured analysis process to include 
an additional construct called a control flow diagram (CFD)—an augmentation of the 
corresponding DFD that has control as well as data processing functions.  The CFD has the 
same bubbles as its companion DFD.  The data lines that join the bubbles on the DFD are 
related only to the data associated with processing needs.  The data lines shown on the CFD 
are only those data items related to control functions.  This model may be considered a special 
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case of modern structured analysis and is particularly useful when the problem entails difficult 
control problems.  
4.4.5.2.4 Models and Simulation 
Models are abstractions of relevant characteristics of a system that are used to understand, 
communicate, design, and evaluate (including simulation) the system.  They are used before the 
system is built and while it is being tested or in service.  A good model has essential properties 
in common with the system/situations it represents.  The nature of the properties it represents 
determines the uses for the model.  A model may be functional, physical, and/or mathematical. 
For complex system problems, it is necessary to analyze and design a number of different 
systems, each of which is represented by a specific model.  The different models permit 
individual investigation of different aspects.  These different modeling perspectives are 
incrementally constructed and integrated in a unified description (system model) to maintain a 
holistic system perspective from which the emergent properties of the system are deduced and 
verified. 
The system model emphasizes the interactions of the objects in the context of the system, 
including the objects in the environment.  Object semantics represent the components of a 
system, their interconnections, and their interactions when they are responding to the stimulus 
from the objects in the environment.  These object semantics are partitioned into a static as well 
as dynamic modeling representation that describes the system’s structure and behavior, 
respectively. 
In this sense, the models embody the decisions made over the different steps of the Lifecycle 
Engineering process (Section 4.13).  The models are developed as part of the decisionmaking 
process and support the evolution of the system design process as well as the iterative nature 
of the engineering in an environment where changes and enhancements to the models are 
managed in a controlled manner. 
4.4.5.2.5 Thread Analysis 
One major challenge to Functional Analysis is the development of software that implements the 
desired behavior of the system.  Because system behavior is primarily implemented in software, 
a critical issue in system development is “how system engineers interact with the software 
engineers to ensure that the software requirements are necessary, sufficient, and 
understandable.”  This problem is addressed at the practitioner level, and experience has 
shown that the approach of passing paper specifications between systems and software 
developers does not yield satisfactory results.  
Stimulus-condition-response threads are an excellent way to control the software development 
process, including translation from system to software requirements, design verification, review 
of software test plans, and integration of software and system testing.  The threads enumerate 
the number of stimulus-condition-response capabilities to be tested.  Threads also tie to 
performance requirements.  Experience in the past 20 years on a variety of thread versions 
shows that such approaches are both feasible and effective. 
4.4.5.2.5.1 The Use of Threads 
System and software engineers shall work together to identify the system-level threads and the 
subset of the threads that the computer system supports.  In this context, a thread consists of a 
system input, system output, description of the transformations to be performed, and conditions 
under which the transformations hopefully occur.  Such threads may be represented textually or 
graphically in a variety of ways, some of which are supported by tools.  The following guidelines 
apply to the use of threads: 
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• The threads satisfy the need for efficient communication between system and software 
developers 

• The identification of a thread from input to output allows the identification of the 
subthread to be allocated to the processing subsystem and, hence, software 

• The description of stimulus-condition-response threads eliminates the ambiguities found 
in current specifications 

• The description of threads is inherently understandable, particularly if provided in some 
graphical format 

• The use of such threads aids in evaluating the impact of proposed changes 
In the following steps, the development of software requirements is evolutionary, starting with 
allocation of processing requirements to a processing system and ending with publication and 
review of the software requirements.  
4.4.5.2.5.2 Step 1:  Deriving the System-Level Threads for Embedded Systems 
No matter how the system description is developed, even if it is no more than the identification 
of system functions for different modes of operation, system inputs and outputs shall be 
identified in order to anchor the specification to reality.  This process starts with the initial 
scenarios that describe the system’s intended operations, which may be rewritten into the form 
of stimulus-condition-response threads. 
To illustrate, consider the bank automated teller machine (ATM) system, which, by processing 
ATM cards and personal identification numbers (PIN), enables customers to perform banking 
transactions.  Figure 4.4-36 presents two top-level scenarios that describe the top-level 
behavior of the ATM system when presented with an ATM card and a PIN.  The two scenarios 
are PIN is accepted and PIN is rejected.  From the scenarios or the integrated behavior, the 
stimulus-condition-response threads are identified.  This set of threads may be specified in a 
number of notations.  Figure 4.4-37 presents the stimulus-condition-response threads in a 
functional format.  Note that the conditions for each of the threads are to avoid ambiguity.  
These conditions are a combination of two factors: 

• The mode of the system, which determines which kind of input is expected 

• The combination of values of the system state information and the contents of the input 
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Figure 4.4-36.  Top-Level Scenarios in Thread Analysis 

Thus, a correct PIN yields a menu, while an incorrect PIN results either in a message to “try 
again” or the machine “swallowing” the card, depending on the mode of the system.  These 
conditions require that a thread be associated with the conditions in order to make them 
testable.  To show the conditions explicitly, the “Accept PIN” function is decomposed to show its 
input-output behavior under different conditions. 

 
Figure 4.4-37.  Stimulus-Condition-Response Threads 
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4.4.5.2.5.3 Step 2:  Decomposing the Threads to the Subsystem 
It is necessary to decompose functions to the level where functions are uniquely identified by 
their requirements.  This process is illustrated in Figures 4.4-36 through 4.4-40.  In Figure  
4.4-36, the top-level scenarios are defined; in Figure 4.4-37, examples of stimulus-condition-
response threads are provided; in Figure 4.4-38, stimulus-condition-response threads are 
defined with their conditions; in Figure 4.4-39, the threads are defined in condition format; and in 
Figure 4.4-40, the system-level function “Accept PIN” is decomposed into functions to read the 
card (allocated to a card reader) and the functions and conditions allocated to the computer.  
Usually, most or all of the conditions are allocated to the computer system, with mechanical 
functions allocated to the other less intelligent components.  Hence, most of the system threads 
yield a thread, with conditions, allocated to the computer subsystem, of which the majority is 
then allocated to the computer software with the software driving the computer hardware 
requirements.  Thus, there is a direct traceable relationship between the system level, computer 
system level, and software level of requirements. 
Figures 4.4-38 through 4.4-40 identify the difference between the system and computer system 
threads.  The system uses a card reader component to read the card, a terminal component to 
accept push button inputs from customers, and a processor component to provide the 
intelligence to process the requests.  Note that this process results in the requirement for the 
computer system to direct its threads to translate “card info” and “PIN info” to various output 
displays. 

 
Figure 4.4-38.  Threads Identified With Conditions 
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Figure 4.4-39.  Threads in Condition Format  

 

 
Figure 4.4-40.  System-Level Functions Decomposed 
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Threads 1 through 4 are traceable through this design, thus validating it.  The same approach 
works when an object-oriented design presents a number of objects implemented as 
independent software processes.  When software design occurs that divides the overall 
software into computer software configuration items (CSCI), computer software components 
(CSC), and computer software units (CSU), the above process of decomposing and allocating 
the system-level threads into the components is repeated for each level of component.  Again, if 
a thread is untraceable, it signifies an omission in the design.  The system engineer traces the 
allocated system requirements to the software requirements review, which is followed by the 
CSCIs, CSCs, and CSUs for the software preliminary and critical design reviews. 
If the software designers trace the computer system to software design threads as part of the 
requirements satisfaction demonstration, then the system engineer need only verify the 
completeness of the traceability.  Tools strengthen the reliability of such a traceability 
evaluation.  If the software designers do not perform this activity, then it is recommended that a 
joint team of system and software engineers perform the tracing to verify the design in 
preparation for the design reviews.  In any event, the software-level threads shall be identified in 
order to provide systematic test planning. 
 

 
Figure 4.4-41.  Tracing the Threads  
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system test, the card reader component itself is used as the source of the data when an ATM 
card is the input. 
This same approach is also used to construct the system-level test plans in a way that exploits 
the early availability of computer software that provides user-oriented capabilities.  Thus, an 
early build of software may be integrated with a card reader to perform a test of Thread 1 
through the system before the remainder of the software is developed.  If the card reader is not 
available until later in the test cycle, then other threads may be tested first. 
4.4.5.2.5.6 Notation 
Several kinds of notations may be used for tracking the threads, but these notations usually fall 
under requirements- and design-oriented notations.  Requirements-oriented notations describe 
the inputs, conditions, and outputs, while the design-oriented notations describe the threads 
with respect to the major design elements.  Because both eventually describe the same 
stimulus-condition-response information, their use is essentially equivalent (though the design-
oriented notation is more useful for actually defining the builds of software). 
4.4.5.2.5.7 Conclusion 
System engineers need to take the lead in constructing a sufficient process for system and 
software engineers to communicate, as it is the responsibility of the communicator to 
communicate in a language that the recipient understands.  It is not feasible for system 
engineers to wait for software requirements methodologies to stabilize and accomplish this 
objective because software requirements and design techniques show no signs of stabilizing.  
The problem needs to be addressed within the existing context of multiple software 
requirements languages. 
4.4.5.2.6 Object-Oriented Analysis 
4.4.5.2.6.1 Early Versions 
Early models advanced by Yourdon (2000) focused on objects that encapsulated computer 
processing and data, thus ending the separate analysis of these two previously inseparable 
facets of any computer software entity and, thereby, providing a tremendous improvement in 
software analysis.  The model encouraged problem space entry using objects that represented 
the physical entities in the problem and solution space.  Functionality and behavior of the 
problem space was explored based on these objects; therefore, it was not possible to follow the 
concept of form follows function when applying it.  Early OOA models may be effective in 
analyzing systems with heavy precedence but problematic when exploring unprecedented 
problems. 
Most authors who supported early OOA encouraged identification of objects that reflected 
elements of the problem space, that these objects be linked and organized into major subject 
areas, and that they be followed by refining the objects by identifying object functionality in 
terms of a DFD and behavior using state diagrams.  Note that it was not easy to begin with 
functionality or behavior, rather one had to explore functionality and behavior in terms of 
previously defined objects.  
4.4.5.2.6.2 Unified Modeling Language  
4.4.5.2.6.2.1 Background 
The UML is a language for specifying, visualizing, constructing, and documenting the artifacts of 
software systems as well as for business process modeling.1  The UML represents a collection 
                                                
1 OMG Unified Modeling Language Specification, Version 1.4, September 2001. 
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of “best engineering practices” that have proven successful in modeling large and complex 
systems.  Rational Software and its partners developed the UML, which is now an industry 
standard (www.omg.org/uml).  It is widely supported, and there are numerous commercial 
packages available (www.incose.org) that may be used to develop UML-compliant models.  
These packages provide a collection of functionality ranging from purely drawing UML diagrams 
(low cost) to full round-trip engineering with model syntax checking and code generation (higher 
cost). 
The principal benefit obtained from employing a standardized modeling language is that it 
provides a common framework for communicating system design and behavior between the 
organizations and various individuals, including users, architects/developers, and operators, 
involved with the system under development.  Developing a model for an industrial-strength 
software system prior to its construction or renovation is as essential as having a blueprint for a 
building.  Comprehensive models are essential for communication among project teams to 
ensure architectural soundness.  As the complexity of the system increases, so does the 
importance of efficient modeling techniques. 
The UML focuses on a standard modeling language, not a standard process.  Although the UML 
has to be applied in the context of a process, experience has shown that various organizations 
and problem domains require a different process.  The UML authors promote a development 
process that is use-case driven, functional architecture centric, iterative, and incremental.  
However, this specific development process is not required or enforced by the language.  The 
UML merely provides the capability for: 

• Model elements—fundamental modeling concepts and semantics 

• Notation—visual rendering of model elements 

• Guidelines—idioms of usage within the trade 
Additionally, the UML provides extensibility and specialization mechanisms to extend core 
components.  Though the UML is object-oriented by default, it is independent of particular 
programming languages. 
4.4.5.2.6.2.2 Development Artifacts 
The decision regarding which diagrams to create is largely dependent upon the system under 
development.  Focusing on the relevant aspects of the system is critical in the abstraction 
process.  The UML provides a rich notation to describe the static and dynamic behaviors of the 
system through several diagrams.  These diagrams provide complementary views of the 
system, which are then developed and used by the various stakeholders. 
The UML diagrams fall into the four following groups: use-case diagrams, class diagrams, 
behavior diagrams, and implementation diagrams. 
Use Case Diagram:  A use-case diagram depicts one or more use-cases with its associated 
primary and secondary actors.  An actor defines a role that a person plays with respect to the 
system.  A use-case, by definition, yields an observable result of value to its primary actor.  A 
secondary actor may be invoked by the use-case and provides a service.  Actors may have a 
primary role in one use-case and a secondary role in another use-case.  Use-cases are 
particularly well suited for capturing requirements.  Figure 4.4-42 is an example of a use-case 
diagram. 
Class Diagram:  A class diagram provides a static view of the system’s classes and depicts the 
relationships between the various classes.  A class is a fundamental construct in all object-
oriented languages and includes the notion of data and functions that are logically grouped.  
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Individual class diagrams may depict attributes (e.g., data) and operations (e.g., functions) with 
varying levels of detail as necessary. 
Behavior Diagrams:  Behavior Diagrams are used to depict the dynamic operation of the 
system and include statechart diagrams, activity diagrams, sequence diagrams, and 
collaboration diagrams.  A statechart diagram typically describes all possible states that a 
particular object may inhabit and how the object’s state changes with regard to external events.  
Activity diagrams describe sequences of activities in which an activity typically represents a real-
world process.  Sequence diagrams depict a time-ordered flow of events between classes and 
actors and frequently describe a complex interaction between a small number of classes.  
Similarly, collaboration diagrams depict a time-ordered flow of events between actors and 
classes using a different layout; they are frequently drawn at a more abstract level.  
Collaboration diagrams are well suited for identifying underlying design patterns.  Figures 4.4-43 
and 4.4-44 are examples of behavior diagrams. 
Implementation Diagrams:  Implementation diagrams include both component and 
deployment diagrams.  A component diagram depicts the various components and their 
dependencies in which a component typically represents a physical module of code.  
Alternatively, a deployment diagram depicts the physical relationships between software and 
hardware components.  
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Figure 4.4-42.  Day Visual Flight Rules Prefiled Flight Plan Use-Case Diagram 
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Figure 4.4-43.  Day Visual Flight Rules Prefiled Flight Plan Activity Diagram 
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Figure 4.4-44.  Day Visual Flight Rules Prefiled Flight Plan Collaboration Diagram 
 

4.4.6 Functional Analysis Process Metrics 
Candidate metrics used to measure the overall process and products of Functional Analysis 
include the following:  

• Percent of analysis studies completed (schedule/progress) 

• Depth of the functional hierarchy as a percentage versus the target depth 
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Of the seven general measurement categories (see Table 4.1-1), the two that are applicable to 
Functional Analysis are Process Performance and Product Quality.  In addition to the measures 
listed above, other candidate measures for Functional Analysis are provided in the table below.  
It is recommended that each effort tailor these measures and add other applicable project-
specific measures to ensure the contribution of necessary information to the decisionmaking 
processes. 
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Table 4.1-1.  Candidate Measures for Functional Analysis* 
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*Note: These measures are only general examples to indicate the type of information that might be 
included in the individual section measurement matrix. 
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